Linear kernels for k-tuple and liar's domination in bounded genus graphs

نویسندگان

  • Arijit Bishnu
  • Arijit Ghosh
  • Subhabrata Paul
چکیده

A set D ⊆ V is called a k-tuple dominating set of a graph G = (V,E) if |NG[v] ∩D| ≥ k for all v ∈ V , where NG[v] denotes the closed neighborhood of v. A set D ⊆ V is called a liar’s dominating set of a graph G = (V,E) if (i) |NG[v] ∩D| ≥ 2 for all v ∈ V , and (ii) for every pair of distinct vertices u, v ∈ V , |(NG[u] ∪NG[v]) ∩D| ≥ 3. Given a graph G, the decision versions of k-Tuple Domination Problem and the Liar’s Domination Problem are to check whether there exists a k-tuple dominating set and a liar’s dominating set of G of a given cardinality, respectively. These two problems are known to be NPcomplete [LC03, Sla09]. In this paper, we study the parameterized complexity of these problems. We show that the k-Tuple Domination Problem and the Liar’s Domination Problem are W[2]-hard for general graphs but they admit linear kernels for graphs with bounded genus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

Roman k-Tuple Domination in Graphs

For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$‎, ‎we define a‎ ‎function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating‎ ‎function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least‎ ‎$k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$‎. ‎The minimum weight of a Roman $k$-tuple dominatin...

متن کامل

k-TUPLE DOMATIC IN GRAPHS

For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...

متن کامل

K-tuple Domination in Graphs

In a graph G, a vertex is said to dominate itself and all of its neighbors. For a fixed positive integer k, the k-tuple domination problem is to find a minimum sized vertex subset in a graph such that every vertex in the graph is dominated by at least k vertices in this set. The current paper studies k-tuple domination in graphs from an algorithmic point of view. In particular, we give a linear...

متن کامل

On the algorithmic complexity of k-tuple total domination

For a fixed positive integer k, a k-tuple total dominating set of a graph G is a subset D ⊆ V (G) such that every vertex of G is adjacent to at least k vertices in D. The k-tuple total domination problem is to determine a minimum k-tuple total dominating set of G. This paper studies k-tuple total domination from an algorithmic point of view. In particular, we present a linear-time algorithm for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2017